62 research outputs found

    Compatibility between pricing rules and risk measures: the CCVaR

    Get PDF
    Research partially supported by “RD Sistemas SA”, “Comunidad Autónoma de Madrid” (Spain), Grant s-0505/tic/000230, and “MEyC” (Spain), Grant SEJ2006-15401-C0

    Good deals in markets with frictions

    Get PDF
    This paper studies a portfolio choice problem such that the pricing rule may incorporate transaction costs and the risk measure is coherent and expectation bounded. We will prove the necessity of dealing with pricing rules such that there are essentially bounded stochastic discount factors, which must be also bounded from below by a strictly positive value. Otherwise good deals will be available to traders, i.e., depending on the selected risk measure, investors can build portfolios whose (risk, return) will be as close as desired to (- infinite, + infinite) or (0, infinite). This pathologic property still holds for vector risk measures (i.e., if we minimize a vector valued function whose components are risk measures). It is worthwhile to point out that essentially bounded stochastic discount factors are not usual in financial literature. In particular, the most famous frictionless, complete and arbitrage free pricing models imply the existence of good deals for every coherent and expectation bounded measure of risk, and the incorporation of transaction costs will no guarantee the solution of this caveatRisk measure, Perfect and imperfect markets, Stochastic discount factor, Portfolio choice model, Good deal

    CAPM and APT-like models with risk measures.

    Get PDF
    The paper deals with optimal portfolio choice problems when risk levels are given by coherent risk mea sures, expectation bounded risk measures or general deviations. Both static and dynamic pricing models may be involved. Unbounded problems are characterized by new notions such as (strong) compatibility between prices and risks. Surprisingly, the lack of bounded optimal risk and/or return levels arises for important pricing models (Black and Scholes) and risk measures (VaR, CVaR, absolute deviation, etc.). Bounded problems present a Market Price of Risk and generate a pair of benchmarks. From these bench marks we introduce APT and CAPM like analyses, in the sense that the level of correlation between every available security and some economic factors explains the security expected return. The risk level non correlated with these factors has no influence on any return, despite the fact that we are dealing with risk functions beyond the standard deviation.Risk measure; Compatibility between prices and risks; Efficient portfolio; APT and CAPM-like models;

    Minimizing measures of risk by saddle point conditions.

    Get PDF
    The minimization of risk functions is becoming a very important topic due to its interesting applications in Mathematical Finance and Actuarial Mathematics. This paper addresses this issue in a general framework. Many types of risk function may be involved. A general representation theorem of risk functions is used in order to transform the initial optimization problem into an equivalent one that overcomes several mathematical caveats of risk functions. This new problem involves Banach spaces but a mean value theorem for risk measures is stated, and this simplifies the dual problem. Then, optimality is characterized by saddle point properties of a bilinear expression involving the primal and the dual variable. This characterization is significantly different if one compares it with previous literature. Furthermore, the saddle point condition very easily applies in practice. Four applications in finance and insurance are presented.Risk minimization; Saddle point condition; Actuarial and finantial aplications;

    Optimizing Measures of Risk: A Simplex-like Algorithm

    Get PDF
    The minimization of general risk or dispersion measures is becoming more and more important in Portfolio Choice Theory. There are two major reasons. Firstly, the lack of symmetry in the returns of many assets provokes that the classical optimization of the standard deviation may lead to dominated strategies, from the point of view of the second order stochastic dominance. Secondly, but not less important, many institutional investors must respect legal capital requirements, which may be more easily studied if one deals with a risk measure related to capital losses. This paper proposes a new method to simultaneously minimize several risk or dispersion measures. The representation theorems of risk measures are applied to transform the general risk minimization problem in a minimax problem, and later in a linear programming problem between infinite-dimensional Banach spaces. Then, new necessary and sufficient optimality conditions are stated and a simplex-like algorithm is developed. The algorithm solves the dual (and therefore the primal) problem and provides both optimal portfolios and their sensitivities. The approach is general enough and does not depend on any particular risk measure, but some of the most important cases are specially analyzed.Risk Measure. Deviation Measure. Portfolio Selection. Infinite-Dimensional Linear Programming. Simpl

    Portfolio choice and optimal hedging with general risk functions: a simplex-like algorithm.

    Get PDF
    The minimization of general risk functions is becoming more and more important in portfolio choice theory and optimal hedging. There are two major reasons. Firstly, heavy tails and the lack of symmetry in the returns of many assets provokes that the classical optimization of the standard deviation may lead to dominated strategies, from the point of view of the second order stochastic dominance. Secondly, but not less important, many institutional investors must respect legal capital requirements, which may be more easily studied if one deals with a risk measure related to capital losses. This paper proposes a new method to simultaneously minimize several general risk or dispersion measures. The representation theorems of risk functions are applied to transform the general risk minimization problem in a minimax problem, and later in a linear programming problem between infinite-dimensional Banach spaces. Then, new necessary and sufficient optimality conditions are stated and a simplex-like algorithm is developed. The algorithm solves the dual problem and provides both optimal portfolios and their sensitivities. The approach is general enough and does not depend on any particular risk measure, but some of the most important cases are specially analyzed. A final real data numerical example illustrates the practical performance of the proposed methodology.Risk measures; Deviation measure; Portfolio selection; Infinite dimensional linear programming; Simplex like method;

    Optimizing Measures of Risk: A Simplex-like Algorithm

    Get PDF
    The minimization of general risk or dispersion measures is becoming more and more important in Portfolio Choice Theory. There are two major reasons. Firstly, the lack of symmetry in the returns of many assets provokes that the classical optimization of the standard deviation may lead to dominated strategies, from the point of view of the second order stochastic dominance. Secondly, but not less important, many institutional investors must respect legal capital requirements, which may be more easily studied if one deals with a risk measure related to capital losses. This paper proposes a new method to simultaneously minimize several risk or dispersion measures. The representation theorems of risk measures are applied to transform the general risk minimization problem in a minimax problem, and later in a linear programming problem between infinite-dimensional Banach spaces. Then, new necessary and sufficient optimality conditions are stated and a simplex-like algorithm is developed. The algorithm solves the dual (and therefore the primal) problem and provides both optimal portfolios and their sensitivities. The approach is general enough and does not depend on any particular risk measure, but some of the most important cases are specially analyzed

    Minimax strategies and duality with applications in Financial Mathematics

    Get PDF
    Many topics in Actuarial and Financial Mathematics lead to Minimax or Maximin problems (risk measures optimization, ambiguous setting, robust solutions, Bayesian credibility theory, interest rate risk, etc.). However, minimax problems are usually difficult to address, since they may involve complex vector spaces or constraints. This paper presents an unified approach so as to deal with minimax convex problems. In particular, we will yield a dual problem providing necessary and sufficient optimality conditions that easily apply in practice. Both, duals and optimality conditions are significantly simplified by drawing on the representation of probability measures on convex sets by points, classic problem for Choquet integrals. Important applications in risk analysis are given.Publicad

    Coherent Pricing

    Get PDF
    Recent literature proved the existence of an unbounded market price of risk (MPR) or maximum generalized Sharpe ratio (GSR) if one combines the most important Brownian-motion-linked arbitrage free pricing models with a coherent and expectation bounded risk measure. Furthermore, explicit sequences of portfolios with a theoretical (risk, return) diverging to (��1;+1) were constructed and their performance tested. The empirical evidence revealed that the divergence to (��1;+1) is only theoretical (not real), but the MPR is much larger than the GSR of the most important international stock indices. The natural question is how to modify the available pricing models so as to prevent the caveat above. The theoretical MPR cannot equal inf nity but must be large enough (consistent with the empirical findings) and this will be the focus of this paper. It will be shown that every arbitrage free pricing model can be improved in such a manner that the new stochastic discount factor (SDF) satisfie the two requirements above, and the newMPR becomes bounded but large enough. This is important for several reasons; Firstly, if the existent models predict unrealistic price evolutions then these mistakes may imply important capital losses to practitioners and theoretical errors to researchers. Secondly, the lack of an unbounded MPR is much more coherent and consistent with equilibrium. Finally, the major discrepancies between the initial pricing model and the modifie one will affect the tails of their SDF, which seems to justify several empirical caveats of previous literature. For instance, it has been pointed out that it is not easy to explain the real quotes of many deeply OTM options with the existing pricing models

    Capital requirements, good deals and portfolio insurance with risk measures

    Get PDF
    General risk functions are becoming very important for managers, regulators and supervisors. Many risk functions are interpreted as initial capital requirements that a manager must add and invest in a risk-free security in order to protect the wealth of his clients. This paper deals with a complete arbitrage free pricing model and a general expectation bounded risk measure, and it studies whether the investment of the capital requirements in the risk-free asset is optimal. It is shown that it is not optimal in many important cases. For instance, if the risk measure is the CV aR and we consider the assumptions of the Black and Scholes model. Furthermore, in this framework and under short selling restrictions, the explicit expression of the optimal strategy is provided, and it is composed of several put options. If the confidence level of the CV aR is close to 100% then the optimal strategy becomes a classical portfolio insurance. This theoretical result seems to be supported by some independent and recent empirical analyses. If there are no limits to sale the risk-free asset, i.e., if the manager can borrow as much money as desired, then the framework above leads to the existence of “good deals” (i.e., sequences of strategies whose V aR and CV aR tends to minus infinite and whose expected return tends to plus infinite). The explicit expression of the portfolio insurance strategy above has been used so as to construct effective good deals. Furthermore, it has been pointed out that the methodology allowing us to build portfolio insurance strategies and good deals also applies for pricing models beyond Black and Scholes, such as Heston and other stochastic volatility model
    corecore